Integrated Nuclear Digital Environment
Safety Moment

Why worry about holding the handrail when using stairs?

In the UK there is a fall on stairs every 90 seconds.

During 2015 there were 787 deaths in England and Wales caused by a fall on and from steps or stairs.

Every year there are over 300,000 visits to Accident and Emergency units following falls on stairs.

According to a OnePoll survey in 2017, 33% of people said that they had fallen up or down the stairs in the last 12 months.

Holding the handrail makes sense!
Agenda
John Stairmand (Wood)

<table>
<thead>
<tr>
<th>Time</th>
<th>Theme</th>
</tr>
</thead>
<tbody>
<tr>
<td>11:00 – 12:00</td>
<td>Presentation</td>
</tr>
<tr>
<td>12:00 – 13:30</td>
<td>Lunch + Demos</td>
</tr>
<tr>
<td>13:30 – 14:15</td>
<td>Discussion in 4 groups</td>
</tr>
<tr>
<td>14:15 – 14:45</td>
<td>Summary statements from discussion and general comments from delegates</td>
</tr>
<tr>
<td>14:45 – 15:00</td>
<td>Summary and meeting close</td>
</tr>
</tbody>
</table>
Overview

• **Introduction**, John Stairmand (Wood)
• **Vision and concept**, Ahmed Aslam (Wood) / Mark Bankhead (NNL)
• **Benefits I**, Chris Jackson (Rolls-Royce)
• **Benefits II**, Ionel Nistor (EDF Energy)
• **Opportunities**, Bruno Merk (NNL, University of Liverpool)
• **Progress and Development**, David Bowman (Virtual Engineering Centre)
Vision and concept
Ahmed Aslam (Wood) & Mark Bankhead (NNL)
Vision and Design

A supported environment set that:

• Enables end users to make informed decisions based on high fidelity information
• Encompasses the whole nuclear lifecycle
• Integrates data and knowledge management
• Allows running complex analysis by broader specialists
• Allows for seamless integration and plug & play
• Enables collaboration within the nuclear sector and internationally
• Promotes the cultural change to enhance innovation
• Adds benefit across the energy sector
Integrated Nuclear Digital Environment – Concept

NEW BUILD:
20% cost savings target

DIGITAL TWIN:
100s Millions cost savings

DECOMMISSIONING:
30% cost savings target
Time / risk reduction

Roadmap

- Working procedures defined
- Stakeholder organisations supporting culture change
- Continued development
- Commercial model defined
- Requirements discussed with stakeholders

Development Versions:
- Release 0.1: Successful proof of concept
- Release 1.0: Agreed architecture design
- Release 1.1: Initial data management & code coupling
- Release 1.2 .. 1.9: Continued code integration
- Release 2.0: Enhanced data management
- Release 2.0: System enhancement
- Release 2.0: Continued development

- Continuous engagement to ensure feedback from users
- New codes developed in parallel
- Parallel BEIS Programmes

Value chain

2018 2021 2030
Value Roadmap

Cost reduction benefits to UK plc build, operation, decommissioning

- 2018
 - Requirements input
 - Commercial model defined
 - Working procedures defined
 - Stakeholders support culture change

- 2030
 - Users begin using tools to share information
 - Integrated industry standard codes
 - Critical adoption point – digital framework available to wider community
 - Framework becomes industry standard

Programme Milestones
Design Considerations

- **Architecture**
 - Collaborative environment
 - Flexible meshing
 - Code coupling
 - Switchable modules
 - Uncertainty analysis / propagation
 - Integration of codes

- **Quality Assurance**
 - Quality management
 - Framework and user QA

- **Integration with other programmes**

- **Modelling**

- **Infrastructure**

- **Safety and Security**
 - Validation and verification
 - Code and Data control

- **User Experience**
 - Information Management
 - User Interface
 - Visualisation
 - GUI
 - Accessibility

- **Audit trails**

- **Plant data (BIM, OPEX...)**

- **Data sharing and handling**
 - Safety systems
 - Fuel behaviour
 - Cooling
 - Structural mechanics
 - Reactor core
 - Processes
 - International considerations
 - IP protection
Stakeholders

- Collaboration is key – “UK Plc”.
- Every stakeholder has their own contributions and benefits.
- Interaction with stakeholders to create new ideas.
Key Benefits

• Reduced HMG investment requirements through sector efficiencies
• Reduced cost
• Entire value chain modelling and simulation – digital twin
• Flexible analysis paths - better verification
• Reduced manual intervention – error reduction
• Plug ‘n’ play codes – increased flexibility and design of new tools
• Knowledge capture & management – a single available source for reference
• Easy to use for current and potential sector stakeholders
• Creating belief in Nuclear, creating confidence
Benefits
Chris Jackson (Rolls-Royce)
Why are Rolls-Royce interested?

- Small ModularReactors
- Operational Services
- Submarines
Short Term Benefits

• More accurate predictions → safer plant
 • Integrations support analyses of a greater range of physics at one time
 • Increases the accuracy and confidence in results

• More robust designs → lower through-life costs
 • Automation will better enable design studies and optimisations
 • 1000s of points run automatically to help us understand the overall design space (not just the peak performance)

• Shorter lead times → faster to market
 • Will remove some of the initial slog in setting up analyses
 • Still allow expert users to understand the detail they need
Long Term Benefits

• Rolls-Royce Supply Chain Engagement
 • Many hurdles to overcome to gather outside support (particularly from start-ups/SMEs)
 • A common platform will aid communication and knowledge sharing

• Knowledge Management
 • Expertise currently held by individuals
 • Common platform will help to store this information and teach the next generation

• Learn from Best Practice
 • Different projects often hit the same issues
 • Gives a clear route to implementing lessons
Benefits
Ionel Nistor (EDF-Energy)
AGR Pod Boiler Spine Digital Twin (EDF Energy)

Complex Geometry
- 10m structure
- >700 pipes

Multi-scale
e.g. manufacturing imperfections, turbulent boundary layer flow around tubes

Multi-Physics
- Primary Gas flow
- Secondary steam flow
- Heat transfer with structures

Multi-tools
- Legacy engineering tool (1D)
- Advanced CFD tool
- Thermal tool

Different parameters of interest
- Temperature at welds (creep, stress corrosion cracking)
- Impact of carbon deposition
- Impact of tube blanking
AGR Pod Boiler Spine Digital Twin (EDF Energy)

Complex Geometry
- 10m structure
- >700 pipes

Multi-scale
e.g. manufacturing imperfections, turbulent boundary layer flow around tubes

Multi-Physics
- Primary Gas flow
- Secondary steam flow
- Heat transfer with structures

Multi-tools
- Legacy engineering tool (1D)
- Advanced CFD tool
- Thermal tool

Different parameters of interest
- Temperature at welds (creep, stress corrosion cracking)
- Impact of carbon deposition
- Impact of tube blanking
Digital Twin for Components

• Expected benefits from the framework
 • Numerical tools to access to parameters for which one can have experimental data in operation
 • Uncertainty quantification
 • Support to safety cases for life extension
 • Decision tools to avoid replacements when not necessary (justified by reliable prediction)
 • Capitalization of the experimental and numerical data to be valorized later

• What is missing / what can be improved
 • Increasing speed to development with an integrated platform rather than ad-hoc approach
 • All the physics present in the numerical model
 • Quality Assurance
Hinkley Point C 3D / 4D Models

Bespoke MEH (Mechanical, Electrical, HVAC) 4D modelling

3D modelling for rebars (design, identification of clash, procurement)
Digital Twin for design, O&M and decommissioning

• Expected benefits from the framework
 • Integrated digital environment allowing for early identification of clash, reduction of the risk in construction/deconstruction
 • Mastering the cost
 • Knowledge management / knowledge transfer tool
 • Easier and faster preparation of the outages
 • Common tools for the Responsible Designer / Licensee / Contractors
 • Communication

• What is missing / what can be improved
 • Extension from CAD / BIM to numerical models
 • Evolving the existing tools/models from as designed to as built and as operated
Opportunities
Bruno Merk (NNL / University of Liverpool)
Opportunities for Development

Elements

Development of Framework
- Integrating existing codes
- System Integrator
- Cutting edge Multi-scale + multi-physics
- Uncertainty Propagation
- HPC deployment

Information Management
- Quality Assurance
- Data security
- Knowledge capture processes
- Standardising outputs
- Data analytics
- Knowledge preservation and education

Software Development
- Operational use defined
- Networks and data transfer
- Open and flexible commercial model
- Code development
- Standards (Security, Quality, Licensing)

Context

R&D Landscape
- Next generation nuclear design
- Validation data and processes
- Making best use of stakeholder expertise
- Aligning current developments with INDE
- Defining requests for development

Culture Change
- Data sharing across supply chain driving down costs
- Encourage innovation from Universities and SME’s
- Open and flexible model
- Integrative working environment
The System Integrator Role

- Enable end users to make informed decisions based on high fidelity information
- Maximising benefits:
 - Learning and linking of individual programmes
 - Managing expectations vs. possible delivery – avoiding duplication
- Common platform for development and knowledge exchange
 - Improving ROI for UK plc
Opportunities for Development

Elements

Development of Framework
- Integrating existing codes
- System Integrator
- Cutting edge Multi-scale + multi-physics
- Uncertainty Propagation
- HPC deployment

Information Management
- Quality Assurance
- Data security
- Knowledge capture processes
- Standardising outputs
- Data analytics
- Knowledge preservation and education

Software Development
- Operational use defined
- Networks and data transfer
- Open and flexible commercial model
- Code development
- Standards (Security, Quality, Licensing)

Context

R&D Landscape
- Next generation nuclear design
- Validation data and processes
- Making best use of stakeholder expertise
- Aligning current developments with INDE
- Defining requests for development

Culture Change
- Data sharing across supply chain driving down costs
- Encourage innovation from Universities and SME's
- Open and flexible model
- Integrative working environment
Progress and Development
David Bowman (Virtual Engineering Centre)
Plant Architecture – System, Sub-System
Framework Architecture

- Uncertainty Quantification
- GUI
 - User Access
 - Configure
 - Start federation
- Analysis Config
- Federation Configs
- Results
- Database
- Link
- Visualisation
- Design Parameter and Metadata
- Start Federation
- Federation Configs Results
- Start Federation
- Analysis-Specific Sim Manager
- RTI
- Code 1
- Code ...
- Code N
- Recorder
- Visuals?

Analysis Specific Federation (Many federations in parallel if needed)
Arrangements for Lunch / Demos

<table>
<thead>
<tr>
<th>Time</th>
<th>AGR demo</th>
<th>PWR demo</th>
<th>Lunch</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 – 12:20</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>12:20 – 12:40</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>12:40 – 13:00</td>
<td>3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>13:00 – 13:20</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>13:20 – 13:30</td>
<td>All at lunch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Group lead
- **Group 1** – Chris Jackson
- **Group 2** – Mark Bankhead
- **Group 3** – Ahmed Aslam
- **Group 4** – Lynn Dwyer

Demonstrator
- **AGR demo**
 - Konstantin Vikhorev
 - Albrecht Kyrieleis
- **PWR demo**
 - Dzianis Litskevich
 - Bruno Merk
Give Your Feedback

WiFi Access:
- Select “WiFi Guest” from available hotspots
- Open web browser to access the Cloud WiFi page
- Register or log-on to The Cloud WiFi

Survey:
- Go to: www.digitalnucleardesign.com/events/
- Click the survey link
- Or use the QR code:
Outline of the Afternoon – Planning for the Future

<table>
<thead>
<tr>
<th>Time</th>
<th>Theme</th>
<th>Facilitator</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30 – 14:15</td>
<td>Group 1</td>
<td>Chris Jackson</td>
</tr>
<tr>
<td></td>
<td>Group 2</td>
<td>Mark Bankhead</td>
</tr>
<tr>
<td></td>
<td>Group 3</td>
<td>Ahmed Aslam</td>
</tr>
<tr>
<td></td>
<td>Group 4</td>
<td>Lynn Dwyer</td>
</tr>
<tr>
<td>14:15 – 14:45</td>
<td>Summary statements by facilitators and general comments from delegates</td>
<td>Chris Jackson, Mark Bankhead, Ahmed Aslam, Lynn Dwyer moderated by John Stairmand</td>
</tr>
<tr>
<td>14:45 – 15:00</td>
<td>Summary and meeting close</td>
<td>John Stairmand</td>
</tr>
</tbody>
</table>
Afternoon Discussion Points

• Benefits
 How do you see your organisation benefitting from the project?

• Capabilities
 How do you think your organisation can contribute to the project?

• What future studies and use-cases would you be interested in?
• Who else do you think should be involved?
• Are there any considerations which you think have been missed in developing the project so far.
Outline of the Afternoon – Planning for the Future

<table>
<thead>
<tr>
<th>Time</th>
<th>Theme</th>
<th>Facilitator</th>
</tr>
</thead>
<tbody>
<tr>
<td>13:30 – 14:15</td>
<td>Group 1</td>
<td>Chris Jackson</td>
</tr>
<tr>
<td></td>
<td>Group 2</td>
<td>Mark Bankhead</td>
</tr>
<tr>
<td></td>
<td>Group 3</td>
<td>Ahmed Aslam</td>
</tr>
<tr>
<td></td>
<td>Group 4</td>
<td>Lynn Dwyer</td>
</tr>
<tr>
<td>14:15 – 14:45</td>
<td>Summary statements by facilitators and general comments from delegates</td>
<td>Chris Jackson, Mark Bankhead, Ahmed Aslam, Lynn Dwyer moderated by John Stairmand</td>
</tr>
<tr>
<td>14:45 – 15:00</td>
<td>Summary and meeting close</td>
<td>John Stairmand</td>
</tr>
</tbody>
</table>
Thank you!

https://www.digitalnucleardesign.com/